

1 **Regional Vulnerability of Cardiac Chambers to** 2 **Radiotherapy: A Multi-Omics Perspective**

3 Cecilia Facchi^a, Ardiansah Nugroho^b, Sami Al-Othman^b, Hanan
4 AbumanhalMasarweh^c, Syed Murtuza Baker^d, Leo Zeef^d, Gerard M. Walls^{e,f}, Dandan
5 Xing^g,
6 Izobelle Morrell-Neal^b, Katharine King^b, Alexandru Chelu^b, Sukhpal Prehar^b, Duncan
7 Forster^h, Mihaela Ghita-Pettigrew^f, Marilena Hadjidemetriou^c, Alicia D'Souzaⁱ, Luigi
8 Venetucci^b, Karl T. Butterworth^f, Elizabeth J. Cartwright^b and Kaye J. Williams^{g,*}

9

- 10 a. Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The
11 University of Manchester, M13 9PL Manchester, United Kingdom.
- 12 b. Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The
13 University of Manchester, M13 9PL Manchester, United Kingdom.
- 14 c. NanoOmics Lab, Centre for Nanotechnology in Medicine, Faculty of Biology,
15 Medicine & Health, The University of Manchester, M13 9PL Manchester, United
16 Kingdom.
- 17 d. Bioinformatics Core Facility, Faculty of Biology, Medicine and Health, The
18 University of Manchester, M13 9PL Manchester, United Kingdom.
- 19 e. Christie NHS Foundation Trust, M20 4BX Manchester, United Kingdom.
- 20 f. Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast,
21 United Kingdom, BT9 7AE, Belfast, United Kingdom.
- 22 g. Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health,
23 The University of Manchester, M13 9PL Manchester, United Kingdom.
- 24 h. Division of Informatics, Imaging & Data Sciences, Faculty of Biology, Medicine and
25 Health, The University of Manchester, M13 9PL Manchester, United Kingdom.
- 26 i. National Heart and Lung Institute, Imperial College London, Imperial Centre for
27 Translational and Experimental Medicine (ICTEM), W12 0NN London, UK

28

29

30

31 *Corresponding Author: Kaye Williams

32

33

34

35

36 ABSTRACT

37 The heart is highly vulnerable to radiotherapy (RT)-induced injury, leading to
38 molecular and structural remodeling collectively termed radiation-induced cardiac
39 toxicity (RICT). Although several biological pathways have been implicated, the
40 regional, cardiac-specific molecular responses to radiation exposure remain
41 incompletely understood. Here, a multi-omics approach was adopted to longitudinally
42 characterise the unique responses to radiation of the heart base (including
43 ventricular base and right atrium), or the heart apex. Ventricular base irradiation
44 induced a cardiomyopathy phenotype, with pronounced molecular perturbations in
45 metabolism and electrical conduction, while changes related to tissue structure were
46 predominant following apex-directed RT. In the right atrium, irradiation drives fibrotic
47 tissue remodelling, leading to an increased propensity for atrial fibrillation,
48 underpinned by changes in sarcomere organisation. This study represents a
49 comprehensive characterisation of differential spatiotemporal radiation effects in the
50 heart and highlights biological and functional pathways that are potentially clinically
51 actionable for cardiac radioprotection and monitoring.

52 **KEY WORDS:** radiation-induced cardiac toxicity, heart subregions, multi-omics

53

54 INTRODUCTION

55 Cardiac radiotoxicity encompasses a spectrum of radiation-induced injuries to
56 cardiac structures, commonly observed following thoracic radiotherapy (RT) for
57 malignancies such as breast and lung cancer¹. Despite technological advancements
58 in RT enabling more precise tumour targeting^{2,3}, this can result in radiation-induced
59 cardiac toxicity (RICT), wherein the heart develops various pathologies in the months
60 or years post-treatment. The initial trigger is thought to be endothelial damage that
61 promotes inflammation with subsequent remodelling leading to chronic pathological
62 change⁴. Within weeks, the side effects of radiation doses to the heart manifest as
63 arrhythmias, cardiomyopathy⁵, atherosclerotic cardiovascular disease and valve
64 disease⁶. Higher radiation doses, combined cardiotoxic systemic anticancer agents,
65 and the presence of pre-existing cardiovascular disease can increase the occurrence
66 of RICT⁷. Recent clinical evidence has established a strong association between
67 cardiovascular outcomes and the specific substructures contained within the
68 irradiated volume of the heart^{8,9}, underscoring the need for substructure-specific
69 dosimetric assessment and sparing strategies. *In vivo* radiation either at the base of
70 the ventricle or at the apex has been correlated with a reduction in function and
71 histological changes^{10,11}. Several preclinical studies have investigated the potential
72 pathophysiological mechanisms underlying RICT, including the importance of the
73 substructures impacted by radiation¹². However, a comprehensive understanding of
74 the molecular and functional changes over time that determine RICT outcome is
75 lacking¹³. This hinders development of risk models that could be used to develop
76 clinically relevant cardioprotective strategies.

77 Among potential drivers of RICT, the cardiac conduction system^{14–16} is the least
78 characterised at the molecular and cellular level. The association between RT and

79 the occurrence of conduction defects has been investigated in different oncological
80 circumstances¹⁷. Adams et al. demonstrated that up to 75% of long-term Hodgkin
81 lymphoma survivors treated with RT had detectable conduction defects after a
82 median follow-up of 14.3 years¹⁸. In clinical studies, the base of the heart has been
83 reported to be the most vulnerable to RT, leading to poor survival in patients with
84 lung cancer¹⁹. This anatomical region includes the aortic root, the sinoatrial node
85 (SAN) and the atrioventricular (AV) node within the right atrium, and the origin of the
86 pulmonary veins on the left atrium. Atkins et al. identified specific associations
87 between various arrhythmia subtypes (e.g. atrial fibrillation (AF), supraventricular
88 arrhythmia and ventricular tachycardia) and cardiac substructure radiation dose in
89 lung cancer patients²⁰. However, the timing and molecular radiopathology
90 underpinning these observations remains poorly characterised²¹.

91 In this study, we adopted a longitudinal small animal experimental approach to
92 identify changes that could predict later dysfunction, adopting both functional and
93 multiomics assays. To mimic RT effects in different cardiac regions, we delivered 16
94 Gy radiation to either the heart base or the apex, as previously described¹⁰. Using
95 spatial transcriptomics, we found that radiation led to differentially expressed genes
96 (DEG) at 10 weeks follow-up, according to the anatomy irradiated. This observation
97 was confirmed with bulk-RNA sequencing and proteomics of myocardial tissue at the
98 final endpoint of 20 weeks, highlighting the unique response of the ventricular base,
99 apex and the right atrium. Region-specific molecular changes were linked to different
100 functional outcomes, underlining the relevance of identifying the irradiated area in
101 thoracic cancer patients to tailor monitoring following treatment, and generating new
102 potential targets for radioprotective drug development.

103

104 **METHODS**

105 **Murine cardiac irradiation model**

106 Female C57BL/6J aged 12 weeks (16-20gr; Envigo, UK) were housed in standard
107 housing conditions for laboratory animals (12-hour light-dark cycle, controlled
108 temperature of 19–22°C and humidity of 40–65%) and provided with a standard diet
109 and water ad libitum. Animals were randomly assigned to treatment groups. All
110 experimental procedures were carried out in accordance with the Home Office
111 Guidance on the Operation of the Animals (Scientific Procedures) Act 1986.

112 Animals were anaesthetised with 2% isoflurane and were irradiated with X-rays (220
113 kV, 13mA) at a dose rate of 2.67 Gy/min on a small-animal radiation research
114 platform (SARRP; Xstrahl Life Sciences, UK). Briefly, cone beam CT (60kV, 0.7mA)
115 collected 360 projections over 1 minute and it was used to reconstruct the 3D image
116 of the whole mouse to identify the heart. Muriplan software was adopted to contour
117 the region of interest, either the base or the apex of the heart to deliver the radiation.
118 A total dose of 16Gy was delivered to the specific substructure of the heart using a 3
119 × 9 mm collimator, as previously described¹⁰. Mice weights were monitored
120 throughout the experiment and remained within tolerated weight loss of < 15%.

121

122 ***In vivo analysis- echocardiography and unconscious electrocardiogram***

123 *In vivo* analysis and monitoring of cardiac function was performed 10- and 20 weeks
124 following radiation. Longitudinal transthoracic echocardiography was performed on
125 anaesthetised mice using the VisualSonics Vevo3100® ultrasound system (Fujifilm
126 VisualSonics Inc.). Anaesthesia was adapted to maintain > 450 bpm using <2%
127 isoflurane during recording. Parasternal long-axis videos were recorded over several
128 cardiac cycles to determine ejection fraction (EF) and global longitudinal strain
129 (GLS). Parameter analysis was conducted using Vevo LAB v5.5.1 software. EF was
130 calculated using the LV trace function of the software on the left ventricle long-axis
131 images, while GLS was calculated using the Vevo Strain package (Fujifilm
132 VisualSonics Inc.) after the endocardium was semi-automatically traced and at least
133 three consecutive cardiac cycles were selected⁶⁸. Observers were blinded to the
134 experimental groups during data acquisition.

135 Analysis of mouse cardiac electrophysiology was performed by adopting an
136 unconscious electrocardiogram (ECG) 1,5,10 and 20 weeks after radiation. Mice
137 were anaesthetised (2% isoflurane) and placed in a supine position on a platform.
138 Surface three-lead ECG was recorded with subcutaneous 2-gauge electrodes
139 attached to the two front paws and the back right paw. The recording was performed
140 with PowerLab/4SP with an ML136 Dual Bio amplifier (ADIInstruments). ECG
141 parameters and intervals were identified using Lab Chart 8 software. QTc interval
142 was corrected using Framingham equation⁶⁹.

143

144 ***Murine electrophysiological analysis***

145 Mice were heparinised with an intraperitoneal injection of Heparin 100 units and
146 euthanized after 10 minutes using cervical dislocation. Excised hearts were
147 cannulated via the ascending aorta with a 22G Langendorff perfusion cannula.
148 Hearts were hung vertically and perfused with oxygenated Tyrode's solution at 37°C.
149 ECG electrodes were placed in contact with the left atrium and the LV apex, while a
150 pacing electrode was placed on the right atrial appendage. The Mapping Lab
151 EMS64-USB-1003 was used for pseudo-ECG recording and pacing protocols were
152 delivered using the Mapping Lab VCS-3001 Stimulator. The function of the sinus
153 node was evaluated by measuring the sinus node recovery time (SNRT), which was
154 assessed by pacing the atrium for 100 beats at a cycle length of 120ms. The first
155 spontaneous P wave was identified and used to determine the SNRT, which was
156 corrected by subtracting the sinus cycle value. PR interval was calculated during
157 SNRT pacing. Anterograde AV nodal function was assessed using an S1-S1
158 protocol, pacing the atria at progressively decreasing cycle lengths. The minimal
159 cycle length required to maintain 1:1 AV conduction identified the Wenckebach
160 paced cycle length (WBCL). Programmed right atrial stimulation was performed at a
161 cycle length of 120 ms to determine the AV effective refractory period (AVERP).

162 Right atrial S1-S11 burst pacing was performed to induce atrial arrhythmias. After
163 recording at baseline, Carbachol (CCH-Merk) was perfused in the tissue and after 10
164 minutes the burst pacing protocol was repeated. A dose of 1µM was adopted to
165 promote AF phenotype as previously described⁷⁰.

166

167 Bulk-RNA sequencing

168 RNA-sequencing was performed on murine atrial and ventricular tissue from sham
169 control, apex-irradiated and base-irradiated heart. Twenty weeks after receiving
170 radiation, mice were euthanized and hearts were quickly extracted. Cardiac tissues
171 were dissected, separating the right atrium from the whole ventricle. Base and apex
172 of the ventricle were isolated from both ventricles, considering the 3mm collimator
173 measurement to collect the direct-irradiated tissue. Dissected tissue was
174 immediately snap-frozen and preserved at -80°C. For base and apex irradiated
175 tissue, sham-irradiated tissue was collected from 4 mice while irradiated tissue was
176 collected from 5 mice. Right atrium tissue was dissected from 3 sham-irradiated mice
177 and 4 irradiated hearts. Ventricle and atria RNA was extracted using RNeasy Mini kit
178 and RNeasy Fibrous Tissue Mini kit (Qiagen), respectively, according to
179 manufacturer guidelines. Total RNA (typically 0.025-1µg) was submitted to the
180 Genomic Technologies Core Facility at the University of Manchester. Expanded
181 methods for RNA processing and sequencing are available in the Supplemental
182 Methods section. The output data was used by the bioinformatics facility at the
183 University of Manchester to perform the analysis. Unmapped paired-end sequences
184 from an Illumina HiSeq4000 / NovaSeq 6000 sequencer were tested by FastQC
185 (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>). Sequence adapters
186 were removed, and reads were quality trimmed using Trimmomatic_0.39⁷¹. The
187 reads were mapped against the reference mouse genome (mm10/GRCm38) and
188 counts per gene were calculated using annotation from GENCODE M25
189 (<http://www.gencodegenes.org/>) using STAR_2.7.7a⁷². Normalisation, Principal
190 Components Analysis, and differential expression were calculated with
191 DESeq2_1.40.2⁷³. Adjusted p-values were corrected for multiple testing (Benjamini
192 and Hochberg method). Heatmaps were drawn with complexHeatmap v2.12.1⁷⁴.
193 Gene ontology enrichment was studied using clusterProfiler v4.8.3⁷⁵, using p
194 adjusted of <0.1 as cut-off. Ingenuity pathway analysis (IPA, Qiagen) was adopted
195 to perform the networks analysis using as cut off p adjusted (padj) of <0.1 and fold
196 change between 1 and -1.

197

198 Spatial transcriptomics

199 Ten weeks post radiation, one control mouse, one irradiated at the base and one at
200 the apex were killed by a regulated procedure. Hearts were immediately extracted,
201 washed in Phosphate buffered saline (PBS), fixed in 4% paraformaldehyde and
202 processed to be embedded in wax. Samples were oriented according to the coronal
203 axis and 5µm sections were obtained using Paraffin Microtome RM2255 (Leica) to
204 obtain a 4-chamber view section. Samples were prepared using Visium Spatial Gene
205 Expression for formalin-fixed & paraffin-embedded FFPE kit (protocol CG00040710x
206 Genomics) according to the manufacturer's guidance. Complete description of
207 sample preparation and sequencing are reported in the Supplemental Methods
208 section. For the downstream analysis, we adopted the Squidpy package in Python.
209 Firstly, we started with quality control (QC) on spots and genes as previously

210 reported for single cell genomics data⁷⁶. We filtered out spots with read counts of
211 less than 300 reads and genes that were expressed in less than 10 spots. We then
212 merged these QC passed spots into a single anndata object for all our further
213 downstream analysis. We first log-normalized (library size normalization) the merged
214 dataset and then computed the neighbours and the UMAP. For clustering, we used
215 the Leiden clustering algorithm and project it on the UMAP for visualization⁷⁷. We
216 applied Wilcoxon test to identify marker genes for identified clusters to then annotate
217 the spots. We then calculate spatially variable genes, genes that have high spatial
218 correlation patterns of expression and vary along the spatial distribution of the tissue
219 structure using Moran's I, which is the correlation in a signal's intensity among
220 nearby locations in space⁷⁸. Visualisation and DEG analysis were performed in
221 cellxGene software (CZ CellxGene Discover), using VIP tool. Cluster 6 and 7 have
222 been clustered as erythroid-like cells and adipocytes respectively; therefore,
223 changes in the abundances could be correlated with different presence of residues of
224 blood and pericardial fat in the specimen and therefore they were excluded from the
225 DEG analysis. Cluster 8 has less than 50 cells in total among the samples so it was
226 excluded from the analysis.

227

228 **Mass spectrometry analysis**

229 Samples were dissected as described for RNA sequencing analysis and preserved at
230 -80°C. Three biological replicates were performed for each treatment across each
231 cardiac region. Detailed protocols for protein digestion, peptide preparation, and
232 mass spectrometry analysis are available in the Supplemental Methods section.

233

234 **Statistical analysis**

235 Statistical analysis and plot data were performed using Prism v9.0 (GraphPad
236 Software, Inc.). Data were initially tested for normality (Shapiro-Wilk). Data are
237 presented as mean \pm SEM according to normality analysis, as stated in figure
238 legends. Outlier analysis was performed before the application of statistical
239 comparison. Unless otherwise stated, a $p < 0.05$ (95% confidence) was considered
240 statistically significant. One-way ANOVA with post hoc multicomparison analysis
241 (Tukey's) or non-parametric test (Kruskal-Wallis test followed by Dunn's multiple
242 comparisons) was used to compare significance among 3 or more groups.
243 Comparison between two groups was performed using a T-test for normally
244 distributed data.

245

246 **Data availability**

247 Open-access datasets are available from ArrayExpress
248 (www.ebi.ac.uk/arrayexpress) with accession numbers E-MTAB-14630 (for bulk RNA
249 sequencing) and E-MTAB-14646 (for Visium Spatial transcriptomics).

250

251 RESULTS

252 Spatial resolution of the effect of radiation on cardiac cell populations

253 We implemented spatial transcriptomics (ST) to define the molecular profile of
254 different anatomical cardiac regions at 10 weeks post-irradiation. Validation of the
255 approach was performed using markers reported in the cardiac spatial transcriptomic
256 literature to identify cardiac cell subtypes (Supplementary Figure 1)²². We identified
257 1837, 1703, and 1773 spots in apex-irradiated (n=1), base-irradiated (n=1) and
258 sham-irradiated (n=1) tissues, respectively, suggesting homogenous sequencing
259 coverage of the samples (Figure 1a-b). After cluster identification, we categorised
260 each cell population, distinguishing the cell type and correlated biological pathways,
261 using EnrichR software.

262 We identified distinctive transcriptional profiles for atrial and ventricular
263 cardiomyocytes²³, confirming the unique nature of these two populations and
264 highlighting the substantial heterogeneity in cardiomyocyte populations²⁴. We
265 identified 3 subpopulations of ventricle cardiomyocytes, represented by clusters 0,1,
266 and 4 (Figure 1c) with no differences in these cluster distributions between the left
267 and right ventricles. These clusters showed sarcomere encoding gene enrichment
268 (Table 1). Cluster 0 represented the conventional ventricular cardiomyocyte
269 population, indicated by the expression of canonical genes connected with metabolic
270 pathways for cardiac muscle contraction²⁵, such as fatty acid degradation and
271 respiratory electron transport (e.g. *Hadha*; *Eno3*; *Ckm*) (Table 1). Clusters 3 and 5
272 represented atria cardiomyocytes and both clusters showed enrichment of muscle
273 contraction-related pathways. However, Cluster 5 presents markers highly
274 associated with right atrium identity, such as *Smad6* and *Bmp10* and gene
275 enrichment pathway analysis highlighted upregulation of adrenergic
276 signallingcorrelated genes (*Ryr2*; *Tpm2*; *Tnnt2*; *Creb3l2*; *Gnas*; *Atp2a2*; *Atp1a1*;
277 *Atp1b1*; *Slc8a1*)²⁶, suggesting a specialisation of those cells in contraction and
278 electrical impulse propagation. Further spatial visualisation of the remaining clusters
279 (clusters 6,7 and 8) can be found in Supplementary Figure 2.

280 The spatial distribution of clusters highlighted the unique response of cardiac tissue
281 to radiation according to the irradiation site (Figure 1c). In the sham-irradiated
282 sample, ventricular cardiomyocyte cluster 0 represented 51% of the overall spots
283 (Figure 1d). Upon irradiation of the apex, the dominant ventricular population
284 became cluster 2, identified as myofibroblasts, distributed throughout the ventricle.
285 Interestingly, this population was almost absent in the base-irradiated and
286 shamirradiated heart. Pathway enrichment analysis confirmed characteristic
287 fibroblastrelated processes, such as organisation of the extracellular matrix
288 (*Col15a1*; *Mmp2*; *Fn1*; *Col3a1*; *Col4a2*; *Adam15*; *Col4a1*), as they are responsible
289 for scar/fibrosis maturation²⁷. The distribution pattern of cluster 2 highlights changes
290 manifested beyond the irradiated volume. This observation is extended with base-
291 irradiation causing shifts within ventricular populations whereby the proportion of
292 cluster 0 to cluster 1 shifts from 51 vs 20% in sham to 26 vs 33% in base-irradiated
293 samples. Genes in cluster 1 correlate to diabetic cardiomyopathy development in
294 the ventricle (e.g.*CD36*, *Tnni3*)^{28,29}, suggesting that cardiomyocytes assume distinct
295 pathological phenotypes dependent on the site of irradiation.

296 A specific radiation-associated subpopulation of cardiomyocytes was identified in the
297 ventricular base, represented by cluster 4, which increased from 3% up to 11-13% in
298 irradiated tissues. The main representative genes were *Myl3*, *Myl7* and *Myl4*, which
299 correlate with pathological rearrangement of the sarcomere³⁰. Interestingly, both
300 apex- and base-irradiated tissues showed an enlargement of this population, despite
301 the location of the radiation, again suggesting that phenotypic change extends
302 beyond the directly irradiated tissues.

303 Together these analyses highlight considerable and distinct changes in the
304 distribution of cell populations, according to the irradiated site, and those changes
305 manifest beyond the directly irradiated tissue.

306

307 **Spatial transcriptomics revealed unique molecular changes across the 308 ventricle according to the radiation area.**

309 Irradiation of either the heart base or apex caused differential gene expression
310 across the ventricle with changes observed beyond irradiated volume. Focusing on
311 clusters 0,1,2,4, we performed DEG analysis to compare ventricular gene expression
312 in sham versus base and apex irradiated samples. Differential responses to radiation
313 were highlighted by the specific DEG in apex-irradiated (n=29, Supplementary
314 Material S1) and base-irradiated hearts (n=19, Supplementary Material S2) (Figure
315 2a-b). DEG following apex-irradiation included *CD74*, *Fabp4* and *Slc25a4*, whilst *Mb*,
316 *Mybpc3* and *Tcap* were dysregulated in the ventricle following base-irradiation
317 (Figure 2c). To identify specific dysregulated pathways, we adopted an enrichment
318 pathway analysis using Kyoto Encyclopedia of Genes and Genomes (KEGG).
319 Apexirradiation led to an enrichment of pathways correlated with the immune
320 response (Figure 2d top). Particularly, myocarditis was observed, confirming what
321 has been previously reported as a generic RICT phenotype³¹. Interestingly, ventricle
322 tissue following heart base-irradiation showed a striking cardiomyopathy-related
323 enrichment, followed by cardiac contraction and metabolism (Figure 2d bottom). To
324 correlate the genes to specific pathways, we performed gene-enriched k-mean
325 cluster analysis in STRING. Biological pathways (BP) of the Gene Ontology (GO)
326 database highlighted changes in pathways correlated to antigen presentation,
327 collagen extracellular matrix and hypertrophy in ventricular tissue following
328 apexirradiation (Figure 2e), while processes connected to sarcomere organisation
329 and oxidative phosphorylation were altered in the base-irradiated sample (Figure 2f).
330

331 Considering the differential molecular changes after radiation at the ventricle level,
332 we investigated the impact of site-specific tissue irradiation on ventricular systolic
333 function and ventricular electrical conduction *in vivo* at the same time point (10
334 weeks after radiation). Echocardiography identified severe impairment of cardiac
335 performance associated with incorrect myocardial deformation demonstrated by the
336 reduction in global longitudinal strain (GLS) in both groups of radiation-treated mice
337 (base-irradiated and apex-irradiated) (Figure 2g). Ejection fraction (EF) remained
338 unaffected at this timepoint (Figure 2h). Longitudinal ECG analysis showed that mice
339 exposed to 16 Gy irradiation exhibited alterations in ventricular depolarization, as
340 shown by the shortening of QRS (Figure 2i). Interestingly, these changes were

341 observed only in the base irradiated group, suggesting spatial specificity of the
342 radiation effects on the cardiac conduction system. No changes were observed in
343 other ECG intervals (Supplementary Table 1).

344 As we observed that pathways correlated with sarcomere organisation were affected
345 in the base-irradiated group, we investigated if this was related to changes in the
346 expression of ion channels and molecules involved in electrical conduction which
347 could result in the observed ECG changes. Limited alterations in the expression of
348 K^+ channels were observed; however, variations in the abundance of genes coding
349 for Na^+/Ca^{2+} handling ion channels, such as *Scn5a*, *Cacna1c*, *Slc8a1*, *Ryr2* and
350 *Atp2a2* were identified (Supplementary Figure 3). Increased expression in *Ryr2*,
351 which is a crucial regulator of Ca^{2+} sarcoplasmic reticulum release³², was observed
352 in DEG analysis in parallel with a significant decrease in *Tcap* expression,
353 suggesting a prominent disruption in the propagation of the conduction potential,
354 considering that *Tcap* is required for the maintenance of T-tubule structure and
355 function³³.

356

357 **Bulk-RNA sequencing and proteomics at 20 weeks after radiation highlighted 358 local changes in irradiated tissue**

359 We next assessed the longer-term impact of radiation on the specific regions of the
360 heart at the functional level and we found that the decreases in GLS identified at 10
361 weeks post-irradiation were preserved at 20 weeks after radiation (Supplementary
362 Figure 4). At this later time point, we found that there was also a reduction in EF in
363 the apex-irradiated mice. Therefore, we investigated the possible exacerbation of
364 pathological pathways at the transcriptional level. Region-specific bulk-RNA
365 sequencing analysis of irradiated tissue confirmed that the different locations of the
366 ventricle exhibited differential remodelling 20 weeks after radiation. In apex-irradiated
367 tissue, statistically upregulated genes were *CD163* and *Mpg*, both known to have a
368 proatherogenic role^{34,35} (Figure 3a). Irradiation at the base of the ventricle led to
369 upregulation of genes correlated with vascular remodelling³⁶, such as *Angpt2*, and
370 higher expression of MHCII genes, including *H2-Eb1*, *H2-Aa*, *H2-Ab1*³⁷ (Figure 3b).
371 BP of GO analysis of apex-irradiated ventricle dysregulated genes (n=1092 with
372 padj<0.1, Supplementary Material S3) showed enriched collagen-organisation
373 pathways (Figure 3c), with an upregulation in cellular proliferation, while extracellular
374 signal-regulated kinase (ERK)1 and ERK2 pathways were the main dysregulated
375 biological pathways in base-irradiated tissue (n=156 with padj<0.1, Supplementary
376 Material S4) (Figure 3d). Ingenuity Pathway Analysis (IPA)-based analysis
377 highlighted the main genes correlated with the relevant pathways, suggesting new
378 potential candidates for therapeutic targets (Supplementary Figure 5). In particular,
379 collagen and TNF-related cellular movement genes were observed dysregulated in
380 apex-irradiated tissue, while base-irradiated ventricle showed pathways correlated
381 with dysregulation of ERK and G protein-coupled receptor (GPCR), which are
382 essential for cardiac function, including heart rate and contraction. Moreover,
383 associations between *Angpt1*/*Angpt2* pathway and collagen formation and focal
384 adhesion kinase were identified among IPA networks in base-irradiated mice. These
385 analyses confirmed that the base and apex of the ventricle have a unique

386 transcriptional remodelling profile after radiation, leading to area-specific molecular
387 changes that could potentially underpin the differential clinical toxicities related to
388 specific cardiac structures.

389 To identify potential protein markers correlated with the specific changes at the tissue
390 level, proteomics analysis was performed at 20 weeks after radiation from each
391 dissected irradiated cardiac region. Apex-irradiated tissue proteomics highlighted 41
392 differentially expressed proteins (Supplementary Material S5), while we identified
393 pronounced remodelling in base-irradiated tissue compared to shamirradiated tissue
394 (Supplementary Material S6), as demonstrated by the 444 differentially abundant
395 proteins (Supplementary Figure 6a-b). Venny-based analysis of differentially
396 expressed proteins highlighted unique changes between base- and apex-irradiated
397 tissues (Supplementary Figure 6c). KEGG-based pathway analysis identified
398 proteasome and metabolism changes as the main dysregulated pathways in apex-
399 irradiated hearts (Figure 3e). Analysis of the changes in the base-irradiated tissue
400 identified that several of the dysregulated proteins correlated to metabolic pathways,
401 such as fatty acid degradation and citrate cycle, suggesting remodelling at the
402 metabolic level of the cardiomyocytes, aligning with the RNA-Sequencing data
403 (Figure 3f). To identify protein-protein interactions in base-irradiated tissue, we
404 adopted STRING K-Mean analysis of the 100 top-upregulated proteins, which
405 highlighted molecules specifically involved in muscle structure development and
406 sarcomerogenesis (*Actn2*, *Myl9*, *Ttn*), suggesting that cellular structure was still
407 remodelling at this stage (Supplementary Figure 7).

408

409 **Radiation-induced gene changes in the right atrium led to perturbation of 410 conduction properties and development of fibrosis**

411

412 In our study, regions of right atrial tissue were also irradiated when targeting the
413 heart base. The right atrium is extensively involved in the initiation and propagation
414 of cardiac depolarisation to the remainder of the heart. To investigate the role of
415 radiation on arrhythmia development, we investigated the molecular changes in
416 cardiomyocytes of the right atrium 10 weeks following irradiation of the heart-base.
417 Firstly, we demonstrated that cardiomyocytes were the major cell type in the right
418 atrium, indicated by the presence of unique atrial cardiomyocyte markers, including
419 *Nppa* and *Myl7* (Supplementary Figure 8). Atria-specific analysis of 38 DEG
420 (Supplementary Material S7) indicated higher expression of pro-fibrotic genes
421 (Figure 4a-b), such as *Ccn2*, in the base-irradiated sample, suggesting a role for
422 those cardiomyocytes in the formation of fibrosis in the atrium. KEGG-based
423 pathway enrichment analysis identified pathways correlated to cardiomyopathy
424 development (Figure 4c) and STRING K-mean analysis of dysregulated proteins
425 highlighted changes in myofilament organisation, contributing to the development of
426 a dilated cardiomyopathy molecular phenotype (Figure 4d). Next, we investigated the
427 transcriptome in the dissected right atrium using bulk-RNA sequencing. BP analysis
428 of right atrium dysregulated genes (n=513 with padj<0.1, Supplementary Material
429 S8) showed that the main dysregulated pathways were linked to extracellular matrix
430 organisation and collagen fibres, suggesting that the right atria tissue could be
431 transitioning to a pro-fibrotic state at this time point (Figure 4e). Specific

432 dysregulation of genes associated with collagen formation and electrical conduction
433 properties was observed by IPA (Supplementary Figure 9a-b). Moreover, Upstream
434 Regulator Analysis (URA) in IPA identified abnormal morphology and enlargement of
435 the heart chamber as final overall effects of pathways dysregulated after radiation,
436 supporting the hypothesis of pathological atrial remodelling (Supplementary Figure
437 9c). Proteomics-based analysis of dysregulated genes (Supplementary Material S9)
438 highlighted that purine metabolism was the main dysregulated pathway in the
439 irradiated tissue (Figure 4f), supporting a change in tissue organisation as alteration
440 of this pathway has been correlated with development of dilated cardiomyopathy³⁸.

441 To further investigate the effect of radiation-mediated tissue remodelling of the right
442 atrium, we performed pacing to investigate SAN and atrioventricular (AV) node
443 function. Surprisingly, no statistical difference was observed in SAN activity
444 (Supplementary Figure 10a), between base and sham-irradiated hearts, suggesting
445 an absence of modification of the function of this structure. However, the autonomic
446 signal-independent PR interval was significantly longer in the base-irradiated group
447 compared to sham-irradiated mice (Figure 4g), suggesting a slowing of AV node
448 conduction between the atria and ventricles. Remarkably, the Atrioventricular
449 Effective Refractory Period (AVERP) was prolonged in base-irradiated animals
450 (Figure 4h), suggesting AV node dysfunction, which was supported by potential
451 changes in Wenckebach cycle length (WBCL) (Supplementary figure 10b).
452 Altogether, these data suggested that heart base radiation involving atrial tissue can
453 cause alteration in the function of the conduction substructures within the right
454 atrium, such as AV node, leading to an impairment of impulse propagation from the
455 AV node.

456

457 **Radiation at the heart base leads to higher susceptibility to AF**

458 To specifically explore the effect of heart-base irradiation on the development of atrial
459 arrhythmias, we investigated the presence of an atrial arrhythmogenic phenotype.
460 Langendorff-based *ex vivo* pacing highlighted an increased atrial tachycardia
461 phenotype in the base-irradiated group (Figure 5a), with 22% (2/9) of the mice
462 developing AF (Figure 5b). After the addition of the acetylcholine receptor agonist
463 Carbachol (CCH), 89% of the base-irradiated mice exhibited AF during the pacing
464 protocol. In contrast, only 2/8 sham-irradiated mice showed AF episodes after CCH
465 infusion. Among the base-irradiated animals, we observed the development of
466 sustained AF, both at baseline (Figure 5c) and after CCH perfusion (Figure 5d),
467 suggesting an intrinsic change in the structure of the tissue that could create a
468 substrate for arrhythmia³⁹.

469

470 **DISCUSSION**

471 Despite an increased understanding of the pathological basis of RICT, optimal
472 guidelines for follow-up and the prevention of cardiac side effects after radiation
473 remain to be fully described^{40,41}. This is due to a lack of understanding of how the

474 variety of pathologies linked to RICT, such as myocardial fibrosis, conduction
475 abnormalities and coronary diseases, manifest and the classical view that the heart
476 is uniformly radiosensitive⁴². Emerging evidence has clearly demonstrated that
477 regions of the heart have differences in radiosensitivity. These concepts are further
478 supported by our findings as we have demonstrated functional, electrophysiological
479 and transcriptional differences following radiation treatment of cardiac-specific
480 subvolumes (Figure 6). These data could potentially explain the differences observed
481 in the clinical landscape, where radiation at the heart base has been correlated with
482 worse survival in lung cancer patients^{43,44}.

483 Base-irradiated tissue showed molecular and cellular changes towards
484 cardiomyopathy 10 weeks after radiation, which could represent an opportunity for
485 toxicity early detection in patients. ST and proteomics highlighted changes in
486 sarcomere protein abundance and oxidative phosphorylation, which has been
487 previously correlated with increased muscle mass due to cardiomyopathy
488 development⁴⁵. Unbalanced fatty acid metabolism and alteration of mitochondria
489 activity have been previously correlated with fibrosis pathogenesis after radiation and
490 cardiomyopathy development^{46–48}. Particularly, the switch to glycolysis is strongly
491 correlated to fibrosis formation and limitation of cardiac regeneration. A prevalence
492 higher than 10% has been estimated for radiation-induced cardiomyopathy⁴⁹.

493 In apex-irradiated tissue, identification of myofibroblasts upon cluster analysis
494 indicates significant, potentially pathogenic, remodelling. In terms of function,
495 myofibroblasts could limit the contractility capacity of the ventricle but support a
496 prolonged function of the organ in time. Dreyfuss previously reported a decrease in
497 cardiac function in apex-irradiated tissue due to fibrosis using a higher dose of
498 radiation (40 Gy)¹¹; we identified this phenotype in our mouse model, with a
499 significant reduction of EF in apex-irradiated mice. However, the EF range was still
500 within the physiological values (apex-irradiated EF mean: 70%; Supplementary
501 Figure 4), suggesting a limited effect due to the lower dosage RT protocol adopted in
502 this study or additional compensatory changes. The latter may be linked with
503 myofibroblast-mediated extracellular matrix organization and/or macrophage-like
504 properties exhibited by myofibroblasts⁵⁰. Proteomics analysis suggested an
505 upregulation of proteasome machinery, widely reported in extracellular matrix
506 reorganization orchestrated by myofibroblasts, possibly reflecting an attempt of the
507 tissue to overcome the radiation-induced damage.

508 RNA sequencing data suggested that apex-irradiated tissue is characterised by
509 extracellular matrix remodelling correlated genes, as demonstrated by the GO
510 analysis. Among the most upregulated genes, we identified *CD163*, *Gsta3* and *Mgp*,
511 which are associated with calcification and subsequent development of
512 atherosclerosis^{51–53}. Those markers are predictors of plaque phenotype but also
513 cardiovascular-specific mortality and incident heart failure, so specific blood analysis
514 in thoracic cancer patients where the apex of the heart is irradiated could allow the
515 preventive identification of early pathological signals for vessel diseases.

516 Previous clinical studies have reported that conduction abnormalities are another
517 side effect of RT. Arrhythmias are reported as appearing within 2 months of the end
518 of the RT⁵. Longitudinal analysis of ECG data demonstrated that according to the

519 specific radiation-targeted regions, the conduction system is differentially affected
520 over time, with a particular effect when the radiation is directed to the base of the
521 ventricle. Shortening of the QRS complex was previously observed by Zhang et al.¹⁴,
522 where they identified this phenomenon in mice treated with whole-heart radiation
523 after 6 weeks. Here, we showed QRS interval shortening specifically after radiation
524 to the base of the ventricle at 10 weeks, proposing a different sensitivity of the
525 anatomical regions. Anatomically, the heart-base radiation volume includes the
526 passage of the impulse from the AV node to the Bundle of His before its propagation
527 to the bundle branches in the distal ventricle. ST analysis revealed the accumulation
528 of *Ryr2* and disruption of the t-tubule network genes, coupled with the
529 downregulation of *Tcap*, which is a key molecule involved in Ca^{2+} -induced Ca^{2+}
530 release³³, suggesting changes in the depolarization of the ventricle. T-tubules are
531 essential invaginations of the cytoplasm that allow the uniform spread of
532 depolarisation in ventricular cardiomyocytes⁵⁴. These findings suggest that irradiation
533 can strongly modulate Ca^{2+} handling at the ventricular level after base radiation⁵⁵,
534 which could lead to physiological alterations. However, changes in function and
535 conduction were modest and non-progressive despite the significant molecular
536 changes, as shown by the 20-week time point. This suggests that the myocardium
537 has the potential to compensate to some extent the structural remodelling and
538 support normal function, which is in line with clinical data, where 70% of the ECG
539 abnormalities can return to normal 6 months after RT⁵. However, early monitoring of
540 ECG in patients who complete RT could predict late dysfunction as we observed in
541 our animal model.

542 Sinoatrial (SAN) and atrioventricular (AV) nodes reside in the right atrium and they
543 are frequently co-exposed during radiation to the base of the heart. In our study, we
544 investigated if the direct tissue remodelling of the right atrium could lead to the
545 alteration of cardiac conduction. Cardiomyocytes are still present in this substructure,
546 but they clearly showed dysregulation of genes correlated with the propagation of
547 Ca^{2+} sparks (e.g. *Tcap* and *Ryr2*). *Ryr2* upregulation at the protein level has been
548 recently reported 60 weeks after radiation by Feat-Vetel et al. in parallel with a
549 drastic presence of fibrosis in the right atrium, suggesting that our analysis could
550 have identified early molecular defects that lead to an exacerbated phenotype at
551 later timepoint⁵⁶. Moreover, cumulative deposition of collagen could lead to a slow
552 deteriorating phenotype, which precipitates an environment conducive to AF
553 arrhythmogenesis in the right atrium. We identified higher expression of *Ccn2* in the
554 right atrium after radiation⁵⁷. Increased levels of *Ccn2* have been previously reported
555 in cardiac tissue in C57BL/6J mice receiving a single X-ray dose of 16 Gy to the
556 heart 40 weeks after radiation⁵⁸. The early detection of this marker could signify a
557 higher susceptibility of right atrium tissue to radiation and *Ccn2* could contribute to
558 the tissue remodelling, potentially predicting fibrotic development at a later time point
559 and being a potential therapeutic target. This is supported by the findings from the
560 proteomics analysis, where base-irradiated right atrium tissue showed purine
561 metabolism pathway variation, which is essential for ATP production, and activation
562 of this pathway has been correlated with the early phases of myocardial infarction in
563 ischemic myocardium⁵⁹, suggesting a potential involvement of this metabolic

564 rearrangement in the response to radiation. This reorganisation at the tissue level
565 could lead to the dysfunction that we observed in the SAN-AV nodes.

566 The hyperactivity of Ryr2 has been correlated to increased AF susceptibility in
567 cardiac disease⁶⁰, and we observed significant upregulation of Ryr2 in our
568 baseirradiated model. To support this concept, we adopted carbachol, which
569 specifically activates Ryr2⁶¹ and increases the utilization of intracellular Ca²⁺ SR
570 stores during parasympathetic dominance⁶². Ex vivo pacing identified increased
571 prevalence of arrhythmias in base-irradiated hearts which was markedly enhanced,
572 and sustained, with carbachol treatment, validating the increased susceptibility of the
573 atria to arrhythmias after radiation⁶³. These data indicate that radiation-induced
574 arrhythmias can arise following irradiation of the heart base, potentially due to impact
575 on the SAN, AV and overall conduction system after RT. Further investigation would
576 be required to understand the relative contribution of right-atria-driven effects to
577 overall propensity for radiation-induced arrhythmia, recognising that the potential
578 contribution of dose to the left pulmonary vein has not been directly addressed in
579 these studies^{64,65}.

580 This work has a direct relevance to patient care. Physiological and functional
581 markers that can distinguish the effect of RT and the relative affected cardiac region
582 are limited in the literature. Altered GLS has been previously reported as a marker of
583 radiation dysfunction in base-irradiated with different cardiac radiation regimes^{10,66}.
584 GLS is a good early marker but does not necessarily differentiate between radiation
585 sites. The risk of conduction abnormalities and arrhythmogenic phenotype align most
586 strongly with heart base irradiation, tailoring monitoring towards these pathologies
587 and recognising that there may be enhanced risk of detrimental outcomes for
588 patients with pre-existing conditions. Similarly, for patients where apex ventricular
589 regions lie within the target radiation field, monitoring for vessel damage markers
590 may be the favoured approach. Our highlighting of molecular mechanisms and tissue
591 remodelling has created a multi-omics database as a valuable resource for the future
592 identification of RICT markers and to aid the identification of potential intervention
593 strategies to mitigate detrimental responses and improve patient outcomes. In
594 conclusion, our study provides a deep molecular and functional characterisation of
595 radiation effects on different cardiac sub-regions, in particular, concerning the cardiac
596 conduction system.

597 This study has limitations, for example, the presented data are derived only from
598 female mice. Small animal analysis and clinical evidence reported that females have
599 a higher incidence of RICT compared to men, especially when they are
600 postmenopausal, highlighting a discrepancy between the sexes⁶⁷. Potential
601 differential responses according to sex should be considered in future evaluations
602 and appropriate follow-up in patients. In this study, we presented a valuable spatial
603 analysis of the effect of RT on different cardiac regions, however, ST resolution is
604 limited as each identified dot corresponds to approximately 20 cells, which could
605 restrict the interpretation of the disposition at a single cardiac cell level. Moreover,
606 the annotation for each dot is the summary of the most abundant population within
607 the dot, losing the information about the remaining cells. Therefore, the possibility of
608 adopting single-cell analysis in parallel to ST would have enabled discrete distinction

609 of cell populations. Moreover, ST was performed on one single plane of each heart,
610 which prevents the comprehensive 3D disposition of the cell populations. Finally, as
611 mentioned, the ex vivo AF pacing protocol did not permit localisation of the origin of
612 AF as the recorded stimulus is produced by both atria.

613

614 REFERENCES

- 615 1. Cella, L. & Palma, G. Radiation Therapy in Thoracic Tumors: Recent Trends
616 and Current Issues. *Cancers* **14**, (2022).
- 617 2. van Velzen, S. G. M. *et al.* AI-Based Quantification of Planned Radiation
618 Therapy Dose to Cardiac Structures and Coronary Arteries in Patients With
619 Breast Cancer. *Int. J. Radiat. Oncol.* **112**, 611–620 (2022).
- 620 3. Atkins, K. M. *et al.* Mean Heart Dose Is an Inadequate Surrogate for Left
621 Anterior Descending Coronary Artery Dose and the Risk of Major Adverse
622 Cardiac Events in Lung Cancer Radiation Therapy. *Int. J. Radiat. Oncol.* **110**,
623 1473–1479 (2021).
- 624 4. Banfill, K. *et al.* Cardiac Toxicity of Thoracic Radiotherapy: Existing Evidence
625 and Future Directions. *J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung
626 Cancer* **16**, 216–227 (2021).
- 627 5. Wang, H. *et al.* Radiation-induced heart disease: a review of classification,
628 mechanism and prevention. *Int J Biol Sci* **15**, 2128–2138 (2019).
- 629 6. Bergom, C. *et al.* Past, Present, and Future of Radiation-Induced
630 Cardiotoxicity: Refinements in Targeting, Surveillance, and Risk Stratification.
631 *JACC. CardioOncology* **3**, 343–359 (2021).
- 632 7. Little, M. P. *et al.* Ionising radiation and cardiovascular disease: systematic
633 review and meta-analysis. *BMJ* **380**, (2023).
- 634 8. McWilliam, A. *et al.* Novel Methodology to Investigate the Effect of Radiation
635 Dose to Heart Substructures on Overall Survival. *Int. J. Radiat. Oncol.* **108**,
636 1073–1081 (2020).
- 637 9. McWilliam, A. *et al.* Dose surface maps of the heart can identify regions
638 associated with worse survival for lung cancer patients treated with
639 radiotherapy. *Phys. Imaging Radiat. Oncol.* **15**, 46–51 (2020).
- 640 10. Ghita, M. *et al.* Cardiac sub-volume targeting demonstrates regional
641 radiosensitivity in the mouse heart. *Radiother. Oncol. J. Eur. Soc. Ther.
642 Radiol. Oncol.* **152**, 216–221 (2020).
- 643 11. Dreyfuss, A. D. *et al.* A Novel Mouse Model of Radiation-Induced Cardiac
644 Injury Reveals Biological and Radiological Biomarkers of Cardiac Dysfunction
645 with Potential Clinical Relevance. *Clin. cancer Res. an Off. J. Am. Assoc.
646 Cancer Res.* **27**, 2266–2276 (2021).

647 12. Walls, G. M. *et al.* Murine models of radiation cardiotoxicity: A systematic
648 review and recommendations for future studies. *Radiother. Oncol. J. Eur.*
649 *Soc. Ther. Radiol. Oncol.* **173**, 19–31 (2022).

650 13. Balaji, P. *et al.* Mechanistic Insights and Knowledge Gaps in the Effects of
651 Radiation Therapy on Cardiac Arrhythmias. *Int. J. Radiat. Oncol. Biol. Phys.*
652 (2024). doi:10.1016/j.ijrobp.2024.08.040

653 14. Zhang, D. M. *et al.* Cardiac radiotherapy induces electrical conduction
654 reprogramming in the absence of transmural fibrosis. *Nat. Commun.* **12**, 5558
655 (2021).

656 15. Hotca, A., Thor, M., Deasy, J. O. & Rimner, A. Dose to the cardio-pulmonary
657 system and treatment-induced electrocardiogram abnormalities in locally
658 advanced non-small cell lung cancer. *Clin. Transl. Radiat. Oncol.* **19**, 96–102
659 (2019).

660 16. Vivekanandan, S. *et al.* The Impact of Cardiac Radiation Dosimetry on Survival
661 After Radiation Therapy for Non-Small Cell Lung Cancer. *Int. J. Radiat. Oncol.*
662 **99**, 51–60 (2017).

663 17. Domanský, M. & Kubeš, J. Cardiac conduction system as a new organ at risk
664 in radiotherapy. *Klin. Onkol.* **38**, 10–19 (2024).

665 18. Adams, M. J. *et al.* Cardiovascular Status in Long-Term Survivors of Hodgkin's
666 Disease Treated With Chest Radiotherapy. *J. Clin. Oncol.* **22**, 3139–3148
667 (2004).

668 19. McWilliam, A. *et al.* Radiation dose to heart base linked with poorer survival in
669 lung cancer patients. *Eur. J. Cancer* **85**, 106–113 (2017).

670 20. Atkins, K. M. *et al.* Cardiac Substructure Radiation Dose and Associations With
671 Tachyarrhythmia and Bradyarrhythmia After Lung Cancer Radiotherapy. *JACC*
672 *CardioOncology* **6**, 544–556 (2024).

673 21. Chin, V. *et al.* Overview of cardiac toxicity from radiation therapy. *J. Med.*
674 *Imaging Radiat. Oncol.* **n/a**,

675 22. Walls, G. M. *et al.* Spatial Gene Expression Changes in the Mouse Heart After
676 Base-Targeted Irradiation. *Int. J. Radiat. Oncol. Biol. Phys.* **115**, 453–463
677 (2023).

678 23. Tabibiazar, R., Wagner, R. A., Liao, A. & Quertermous, T. Transcriptional
679 profiling of the heart reveals chamber-specific gene expression patterns. *Circ.*
680 *Res.* **93**, 1193–1201 (2003).

681 24. Farah, E. N. *et al.* Spatially organized cellular communities form the
682 developing human heart. *Nature* **627**, 854–864 (2024).

683 25. Chen, X. *et al.* Metabolic Reprogramming: A Byproduct or a Driver of
684 Cardiomyocyte Proliferation? *Circulation* **149**, 1598–1610 (2024).

685 26. Dorey, T. W., McRae, M. D., Belke, D. D. & Rose, R. A. PDE4D mediates
686 impaired β -adrenergic receptor signalling in the sinoatrial node in mice with
687 hypertensive heart disease. *Cardiovasc. Res.* **119**, 2697–2711 (2023).

688 27. Liu, M., López de Juan Abad, B. & Cheng, K. Cardiac fibrosis:
689 Myofibroblastmediated pathological regulation and drug delivery strategies.
690 *Adv. Drug Deliv. Rev.* **173**, 504–519 (2021).

691 28. Fahed, A. C. *et al.* Founder Mutation in N Terminus of Cardiac Troponin I
692 Causes Malignant Hypertrophic Cardiomyopathy. *Circ. Genomic Precis. Med.*
693 **13**, 444–452 (2020).

694 29. Shu, H. *et al.* The role of CD36 in cardiovascular disease. *Cardiovasc. Res.*
695 **118**, 115–129 (2022).

696 30. England, J. & Loughna, S. Heavy and light roles: myosin in the morphogenesis
697 of the heart. *Cell. Mol. Life Sci.* **70**, 1221–1239 (2013).

698 31. Sharifkazemi, M., Elahi, M. & Sayad, M. Case report: Early acute myocarditis
699 after radiation therapy for breast cancer: A case presentation and review of
700 literature. *Front. Cardiovasc. Med.* **10**, (2023).

701 32. Kushnir, A. & Marks, A. R. The ryanodine receptor in cardiac physiology and
702 disease. *Adv. Pharmacol.* **59**, 1–30 (2010).

703 33. Ibrahim, M. *et al.* A critical role for Telethonin in regulating t-tubule structure
704 and function in the mammalian heart. *Hum. Mol. Genet.* **22**, 372–383 (2013).

705 34. Bengtsson, E. *et al.* CD163+ macrophages are associated with a vulnerable
706 plaque phenotype in human carotid plaques. *Sci. Rep.* **10**, 14362 (2020).

707 35. Schurgers, L. J. *et al.* The circulating inactive form of matrix gla protein is a
708 surrogate marker for vascular calcification in chronic kidney disease: A
709 preliminary report. *Clin. J. Am. Soc. Nephrol.* **5**, 568–575 (2010).

710 36. Akwii, R. G., Sajib, M. S., Zahra, F. T. & Mikelis, C. M. Role of Angiopoietin-2 in
711 Vascular Physiology and Pathophysiology. *Cells* **8**, (2019).

712 37. Cao, C. *et al.* Elucidating the changes in the heterogeneity and function of
713 radiation-induced cardiac macrophages using single-cell RNA sequencing.
714 *Front. Immunol.* **15**, (2024).

715 38. Wang, G. *et al.* A circular network of purine metabolism as coregulators of
716 dilated cardiomyopathy. *J. Transl. Med.* **20**, 532 (2022).

717 39. Li, C. Y., Zhang, J. R., Hu, W. N. & Li, S. N. Atrial fibrosis underlying atrial
718 fibrillation (Review). *Int. J. Mol. Med.* **47**, (2021).

719 40. Rashed, E. R. & Margulies, K. B. New Cardiotoxicity Risk
720 Assessment Guidelines: Searching for Validation. *JACC. CardioOncology* **5**,
721 638–640 (2023).

722 41. Lyon, A. R. *et al.* 2022 ESC Guidelines on cardio-oncology developed in
723 collaboration with the European Hematology Association (EHA), the European

724 Society for Therapeutic Radiology and Oncology (ESTRO) and the
725 International Cardio-Oncology Society (IC-OS). *Eur. Heart J.* **43**, 4229–4361
726 (2022).

727 42. Mrotzek, S. M., Rassaf, T. & Totzeck, M. Cardiovascular Damage Associated
728 With Chest Irradiation. *Front. Cardiovasc. Med.* **7**, 41 (2020).

729 43. McWilliam, A., Abravan, A., Banfill, K., Faivre-Finn, C. & van Herk, M.
730 Demystifying the Results of RTOG 0617: Identification of Dose Sensitive
731 Cardiac Subregions Associated With Overall Survival. *J. Thorac. Oncol. Off.*
732 *Publ. Int. Assoc. Study Lung Cancer* **18**, 599–607 (2023).

733 44. Walls, G. M. *et al.* The Association of Incidental Radiation Dose to the Heart
734 Base with Overall Survival and Cardiac Events after Curative-intent
735 Radiotherapy for Non-small Cell Lung Cancer: Results from the NI-HEART
736 Study. *Clin. Oncol. (R. Coll. Radiol.)* **36**, 119–127 (2024).

737 45. Barbarics, B. *et al.* Proteomic mapping of atrial and ventricular heart tissue in
738 patients with aortic valve stenosis. *Sci. Rep.* **11**, 24389 (2021).

739 46. Xu, P. *et al.* Radiation-induced dysfunction of energy metabolism in the heart
740 results in the fibrosis of cardiac tissues. *Mol. Med. Rep.* **24**, (2021).

741 47. Lopaschuk, G. D., Ussher, J. R., Folmes, C. D. L., Jaswal, J. S. & Stanley, W.
742 C. Myocardial fatty acid metabolism in health and disease. *Physiol. Rev.* **90**,
743 207–258 (2010).

744 48. Barjaktarovic, Z. *et al.* Ionising radiation induces persistent alterations in the
745 cardiac mitochondrial function of C57BL/6 mice 40 weeks after local heart
746 exposure. *Radiother. Oncol.* **106**, 404–410 (2013).

747 49. Chang, H.-M., Okwuosa, T. M., Scarabelli, T., Moudgil, R. & Yeh, E. T. H.
748 Cardiovascular Complications of Cancer Therapy: Best Practices in Diagnosis,
749 Prevention, and Management: Part 2. *J. Am. Coll. Cardiol.* **70**, 2552–2565
750 (2017).

751 50. Kurose, H. Cardiac Fibrosis and Fibroblasts. *Cells* **10**, (2021).

752 51. Durda, P. *et al.* Circulating Soluble CD163, Associations With Cardiovascular
753 Outcomes and Mortality, and Identification of Genetic Variants in Older
754 Individuals: The Cardiovascular Health Study. *J. Am. Heart Assoc.* **11**,
755 e024374 (2022).

756 52. Yanagawa, B. *et al.* Clinical, biochemical, and genetic predictors of coronary
757 artery bypass graft failure. *J. Thorac. Cardiovasc. Surg.* **148**, 515–520.e2
758 (2014).

759 53. Thomsen, S. B., Rathcke, C. N., Zerahn, B. & Vestergaard, H. Increased levels
760 of the calcification marker Matrix Gla Protein and the inflammatory markers
761 YKL-40 and CRP in patients with type 2 diabetes and ischemic heart disease.
762 *Cardiovasc. Diabetol.* **9**, 86 (2010).

763 54. Ibrahim, M., Gorelik, J., Yacoub, M. H. & Terracciano, C. M. The structure and
764 function of cardiac t-tubules in health and disease. *Proceedings. Biol. Sci.* **278**,
765 2714–2723 (2011).

766 55. Sag, C. M. *et al.* Ionizing radiation regulates cardiac Ca handling via increased
767 ROS and activated CaMKII. *Basic Res. Cardiol.* **108**, 385 (2013).

768 56. Feat-Vetel, J. *et al.* X-ray Radiotherapy Impacts Cardiac Dysfunction by
769 Modulating the Sympathetic Nervous System and Calcium Transients. *Int. J.
770 Mol. Sci.* **25**, (2024).

771 57. Dorn, L. E., Petrosino, J. M., Wright, P. & Accornero, F. CTGF/CCN2 is an
772 autocrine regulator of cardiac fibrosis. *J. Mol. Cell. Cardiol.* **121**, 205–211
773 (2018).

774 58. Subramanian, V. *et al.* Role of TGF Beta and PPAR Alpha Signaling Pathways
775 in Radiation Response of Locally Exposed Heart: Integrated Global
776 Transcriptomics and Proteomics Analysis. *J. Proteome Res.* **16**, 307–318
777 (2017).

778 59. He, J. *et al.* Identification of the metabolic remodeling profile in the early-stage
779 of myocardial ischemia and the contributory role of mitochondrion.
780 *Bioengineered* **13**, 11106–11121 (2022).

781 60. Kim, K. *et al.* The selective RyR2 inhibitor ent-verticilide suppresses atrial
782 fibrillation susceptibility caused by Pitx2 deficiency. *J. Mol. Cell. Cardiol.* **180**,
783 1–9 (2023).

784 61. Ho, H.-T. *et al.* Muscarinic Stimulation Facilitates Sarcoplasmic Reticulum Ca
785 Release by Modulating Ryanodine Receptor 2 Phosphorylation Through
786 Protein Kinase G and Ca/CaModulin-Dependent Protein Kinase II.
787 *Hypertension* **68**, 1171–1178 (2016).

788 62. Harvey, R. D. Muscarinic receptor agonists and antagonists: effects on
789 cardiovascular function. *Handb. Exp. Pharmacol.* 299–316 (2012).
790 doi:10.1007/978-3-642-23274-9_13

791 63. Kovoor, P. *et al.* Evaluation of the role of I(KACh) in atrial fibrillation using a
792 mouse knockout model. *J. Am. Coll. Cardiol.* **37**, 2136–2143 (2001).

793 64. Errahmani, M. Y. *et al.* Supraventricular cardiac conduction system exposure in
794 breast cancer patients treated with radiotherapy and association with heart
795 and cardiac chambers doses. *Clin. Transl. Radiat. Oncol.* **38**, 62–70 (2023).

796 65. Pierre Loap Alfredo Mirandola, L. D. M. V. V. A. B. A. I. R. D. Y. K. & Orlandi, E.
797 Cardiac conduction system exposure with modern radiotherapy techniques for
798 mediastinal Hodgkin lymphoma irradiation. *Acta Oncol. (Madr)*. **61**, 496– 499
799 (2022).

800 66. Ghita-Pettigrew, M. *et al.* Dose-dependent changes in cardiac function, strain
801 and remodelling in a preclinical model of heart base irradiation. *Radiother.
802 Oncol. J. Eur. Soc. Ther. Radiol. Oncol.* **193**, 110113 (2024).

803 67. Andruska, N. *et al.* Differences in radiation-induced heart dysfunction in male
804 versus female rats. *Int. J. Radiat. Biol.* **99**, 1096–1108 (2023).

805 68. Rea, D. *et al.* Strain Analysis in the Assessment of a Mouse Model of
806 Cardiotoxicity due to Chemotherapy: Sample for Preclinical Research. *In Vivo*
807 **30**, 279–290 (2016).

808 69. Lizza, F. *et al.* Atrial fibrillation and QT corrected. What is the best formula to
809 use? *Eur. J. Clin. Invest.* **53**, e14013 (2023).

810 70. Cao, X. *et al.* Influence of chronic volume overload-induced atrial remodeling
811 on electrophysiological responses to cholinergic receptor stimulation in the
812 isolated rat atria. *J. Pharmacol. Sci.* **136**, 73–78 (2018).

813 71. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for
814 Illumina sequence data. *Bioinformatics* **30**, 2114–2120 (2014).

815 72. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**,
816 15–21 (2013).

817 73. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
818 dispersion for RNA-seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).

819 74. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and
820 correlations in multidimensional genomic data. *Bioinformatics* **32**, 2847–2849
821 (2016).

822 75. Wu, T. *et al.* clusterProfiler 4.0: A universal enrichment tool for interpreting
823 omics data. *Innov. (Cambridge)* **2**, 100141 (2021).

824 76. Du, J. *et al.* Advances in spatial transcriptomics and related data analysis
825 strategies. *J. Transl. Med.* **21**, 330 (2023).

826 77. Müller-Bötticher, N., Sahay, S., Eils, R. & Ishaque, N. SpatialLeiden -
827 Spatiallyaware Leiden clustering. *bioRxiv* 2024.08.23.609349 (2024).
828 doi:10.1101/2024.08.23.609349

829 78. Qiu, Z. *et al.* Detection of differentially expressed genes in spatial
830 transcriptomics data by spatial analysis of spatial transcriptomics: A novel
831 method based on spatial statistics. *Front. Neurosci.* **16**, (2022).

832

833

834 **ACKNOWLEDGMENTS**

835 This work was supported by Cancer Research UK RadNet Manchester programme
836 [C1994/A28701] (K.W.). The authors would like to thank Dr Stacey Warwood from
837 the Mass Spectrometry facility of the University of Manchester for her valuable help
838 in processing proteomics samples. We also would like to thank the Genomic
839 Technologies Core Facility at the University of Manchester, in particular Mrs Beverley
840 Anderson, for the support with the sequencing process for bulk RNA sequencing and
841 spatial transcriptomics. Finally, the support from the Bioinformatics Core Facility

842 team for Rna sequencing and spatial transcriptomics analysis. Thanks to NIAID
843 Visual & Medical Arts. Human Heart 000228 & Lab Mouse 000279. 07/26/2024 &
844 9/26/2024. NIAID BIOART Source. bioart.niaid.nih.gov/

845

846

847 AUTHOR CONTRIBUTIONS

848 **Cecilia Facchi**: Conceptualization; Data curation; Formal analysis; Investigation;
849 Visualization; Writing - original draft. **Ardiansah Nugroho**: Conceptualization;
850 Investigation. Writing – review & editing. **Sami Al-Othman**: Investigation; Resources.
851 Writing – review & editing. **Hanan Abumanhal-Masarweh**: Investigation; Resources.
852 Writing – review & editing. **Syed Murtuza Baker**: Data curation; Formal analysis;
853 Software. **Leo Zeef**: Data curation; Formal analysis; Software. **Gerard M. Walls**:
854 Conceptualization; Writing - review & editing. **Dandan Xing**: Investigation. **Izobelle**
855 **Morrell-Neal**: Formal analysis. **Katharine King**: Formal analysis. **Alexandru Chelu**:
856 Software. **Sukhpal Prehar**: Resources **Duncan Forster**: Methodology. **Mihaela**
857 **Ghita-Pettigrew**: Writing – review & editing. **Marilena Hadjidemetriou**: Resources,
858 Methodology. **Alicia D'Souza**: Resources, Methodology. **Luigi Venetucci**:
859 Supervision. **Karl T. Butterworth**: Writing – review & editing, Methodology,
860 Conceptualization. **Elizabeth J. Cartwright**: Writing – review & editing, Writing –
861 original draft, Supervision, Resources, Methodology, Investigation, Data curation,
862 Conceptualization. **Kaye J. Williams**: Writing – review & editing, Writing – original
863 draft, Supervision, Resources, Project administration, Methodology, Investigation,
864 Funding acquisition, Formal analysis, Data curation, Conceptualization.

865

866 COMPETING INTERESTS STATEMENT

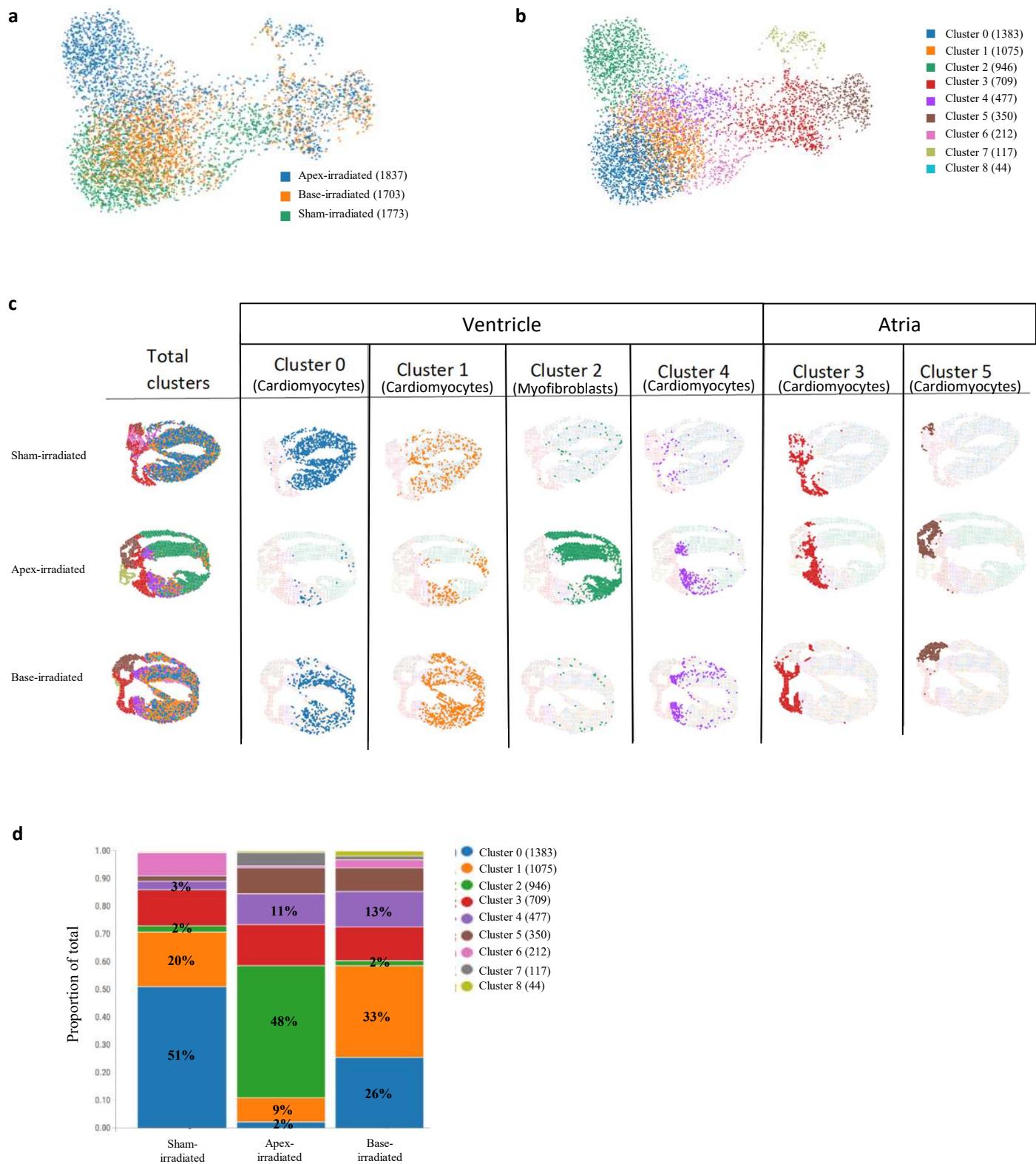
867 The authors declare no competing interests.

868

869 ABBREVIATIONS

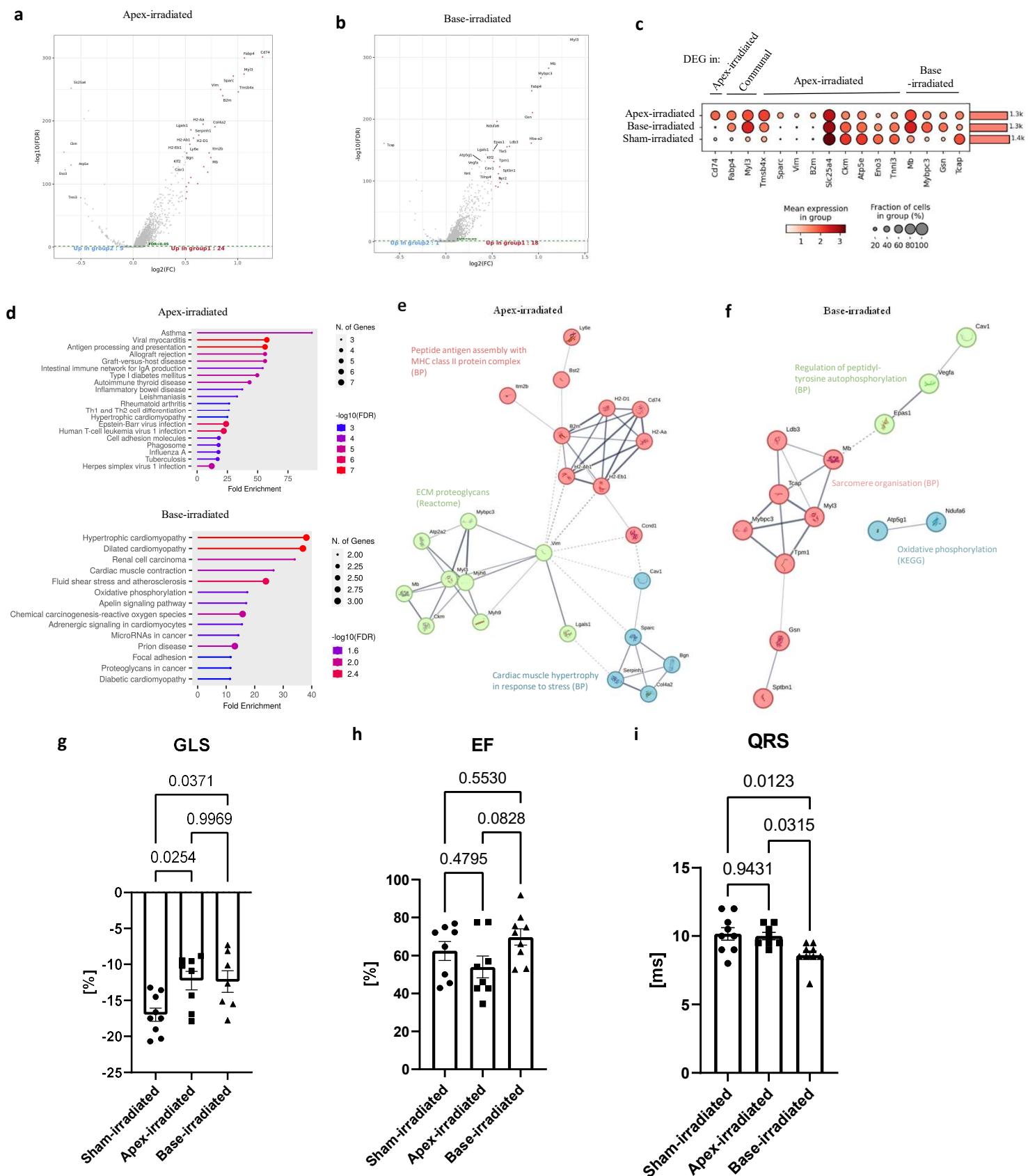
870 RT: radiotherapy

871 ECG: electrocardiogram


872 HF: heart failure

873 AF: atrial fibrillation

874 DEG: differentially expressed genes


875 ST: spatial transcriptomics

876

Figure 1: Spatial resolution of radiation effect on cardiac cell populations

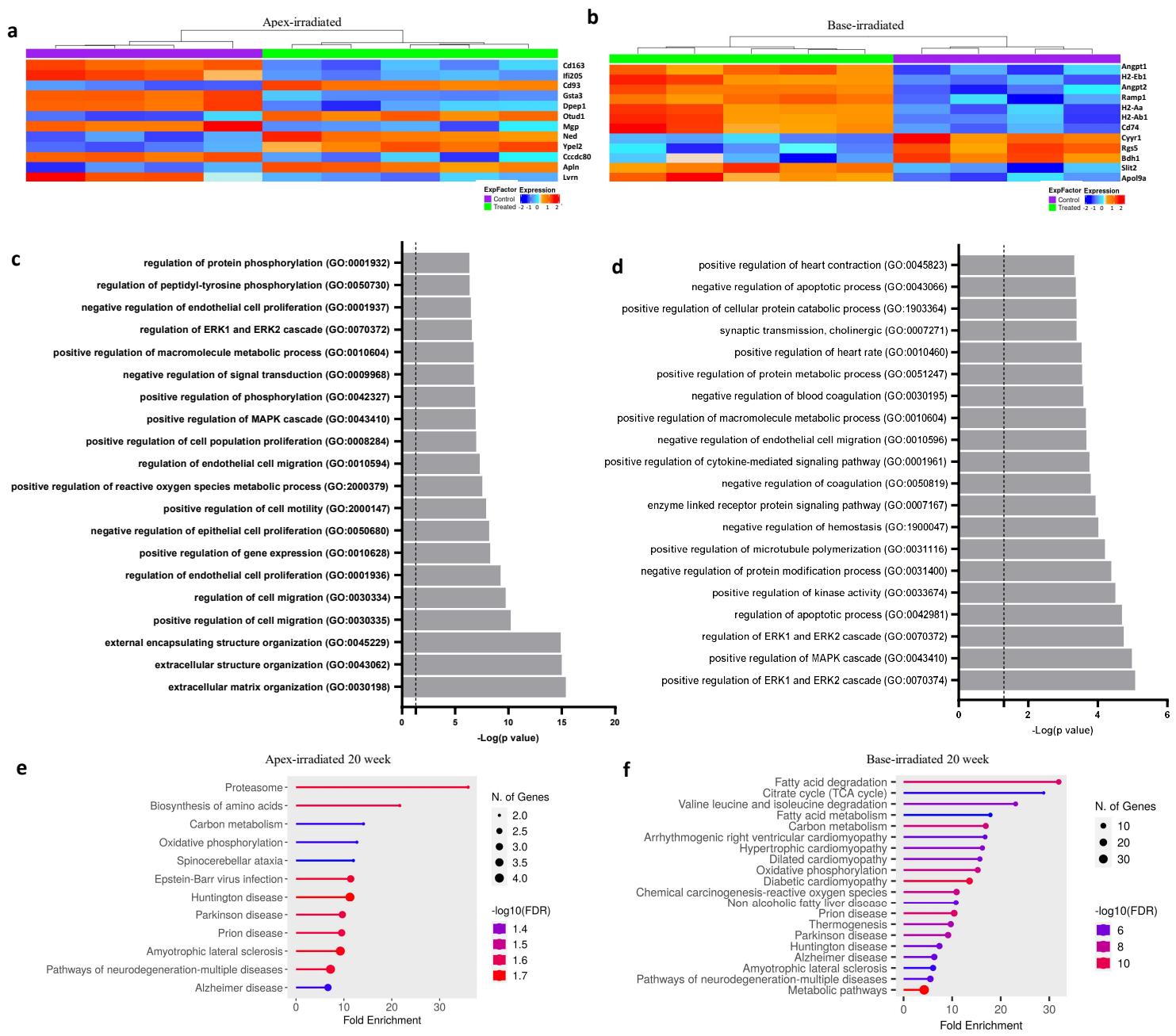
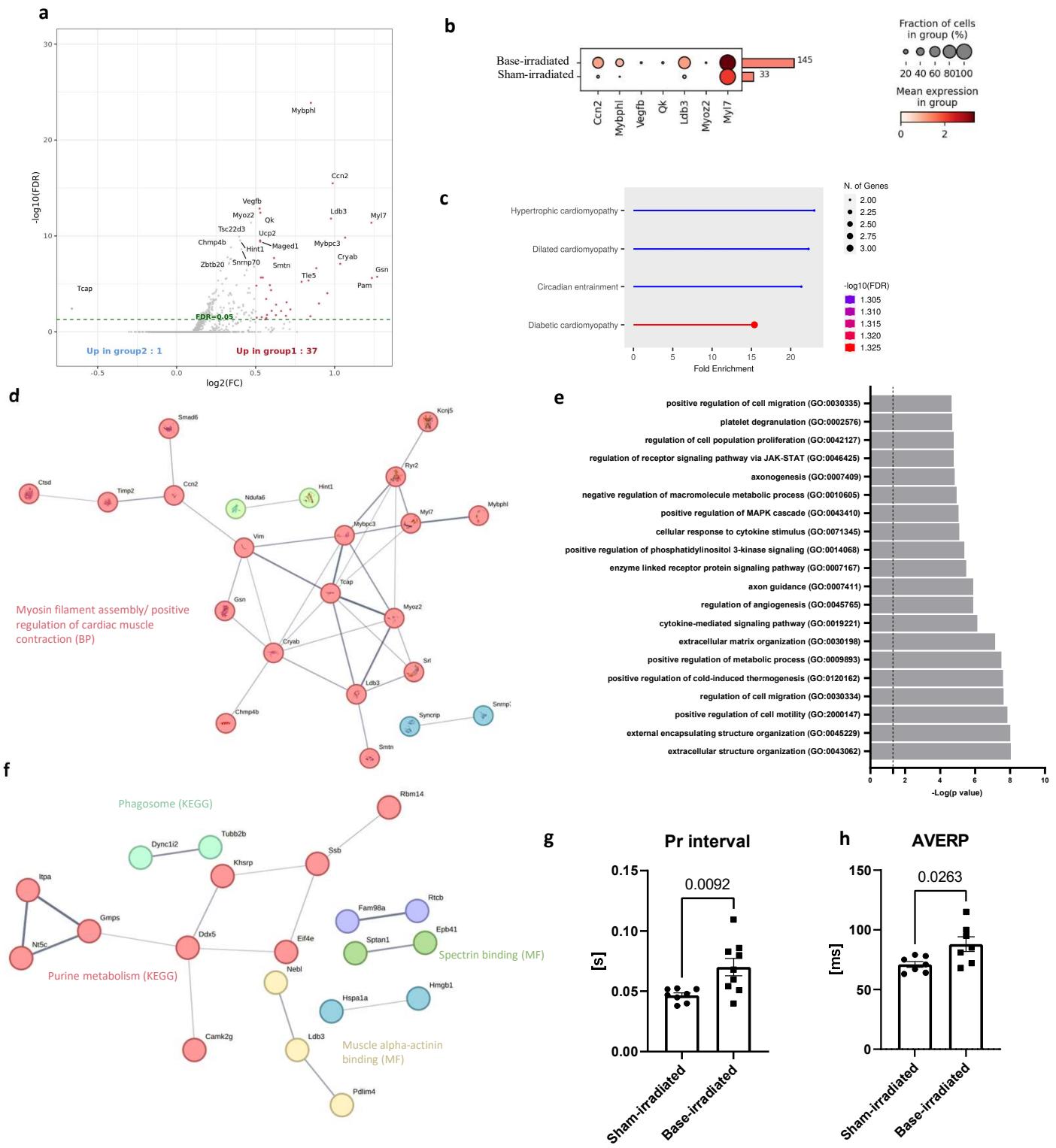

a-b, Uniform manifold approximation and projection (UMAP) embedding of 5313 spots delineate the distribution according to treatment (**a**) and to the gene expression profile of the different clusters (**b**). In brackets, the number of dots according to samples and clusters classification. **c**, Spatial mapping of cell-type populations in sham-irradiated (n=1 animal), base-irradiated (n=1 animal) and apex-irradiated (n=1 animal) samples. Cluster 0,1,2 and 4 were anatomically identified within the ventricular part of the heart, while clusters 3 and 5 were identified in the atria. **d**, Abundance plot with relative proportion of cell populations according to cell clusters in each sample.

Figure 2: At ventricular level, ST revealed unique molecular changes according to radiation area, leading to dysfunction and electrical conduction alteration


a-b, DEG analysis (absolute $\log_2(\text{FC}) > 0.5$, $\text{FDR} < 0.05$) represented by volcano plot for apex- (a) and base- (b) irradiated tissue. Welch's t-test identified 24 up- and 1 down-regulated genes in apex-irradiated heart compared to sham-irradiated. In base-irradiated tissue, 18 up- and 1 downregulated genes were identified. Upregulated genes are identified in red and downregulated genes in light blue. **c**, Dot plot with relative expression of the dysregulated genes in both apex and base irradiated heart. A value of $200 - \log_{10}(\text{FDR})$ was adopted as cut off. The colour of dots indicates level of expression of each marker, while the size displays the percentage of cells expressing it. *Continues*

d, Lollipop charts of the first 15 pathways of the dysregulated genes were identified using ShinyGo 0.80 based on KEGG database for apex-irradiated (top) and base-irradiated tissue (bottom). FDR cut off= 0.05 was used for this analysis. **e-f**, STRING plot showing functional interrelationship of dysregulated genes in the apex- (n=29; **e**) and base-irradiated (n=19; **f**) tissue. K-Mean analysis was performed using 3 clusters/sample. Identification of functional patterns was performed with Biological Pathway (BP; Gene Ontology). Kyoto Encyclopedia of Genes and Genomes (KEGG) or Reactome databases were adopted for the classification in case of missing BP identification, as reported in the figure. The analysis was performed with STRING 12.0. Disconnected dots were hidden from the network. Inter-cluster edges are represented by dashed-lines. **g**, Echocardiographic analysis of cardiac performance using GLS 10 weeks after radiation. Sham-irradiated: n=9 biological replicates; apex-irradiated= 8 biological replicates; base-irradiated= 7 biological replicates. **h**, EF quantification from echocardiography analysis. Sham-irradiated: n=8 biological replicates; apex-irradiated= 8 biological replicates; base-irradiated= 9 biological replicates. **i**, Quantification of QRS interval via unconscious ECG recording. Sham-irradiated: n=9 biological replicates; apex-irradiated= 8 biological replicates; base-irradiated= 8 biological replicates. For all graphs, data are represented as mean \pm SEM. One-way AVONA was adopted for normally distributed data. P values are reported in the graphs and $p<0.05$ was considered statistically significant. MHC: Major histocompatibility complex; ECM: Extracellular matrix; GLS=Global Longitudinal Strain; EF=Ejection fraction; ECG: electrocardiogram

Figure 3: Bulk-RNA sequencing and proteomics analysis 20 weeks after RT highlighted local changes in irradiated tissue

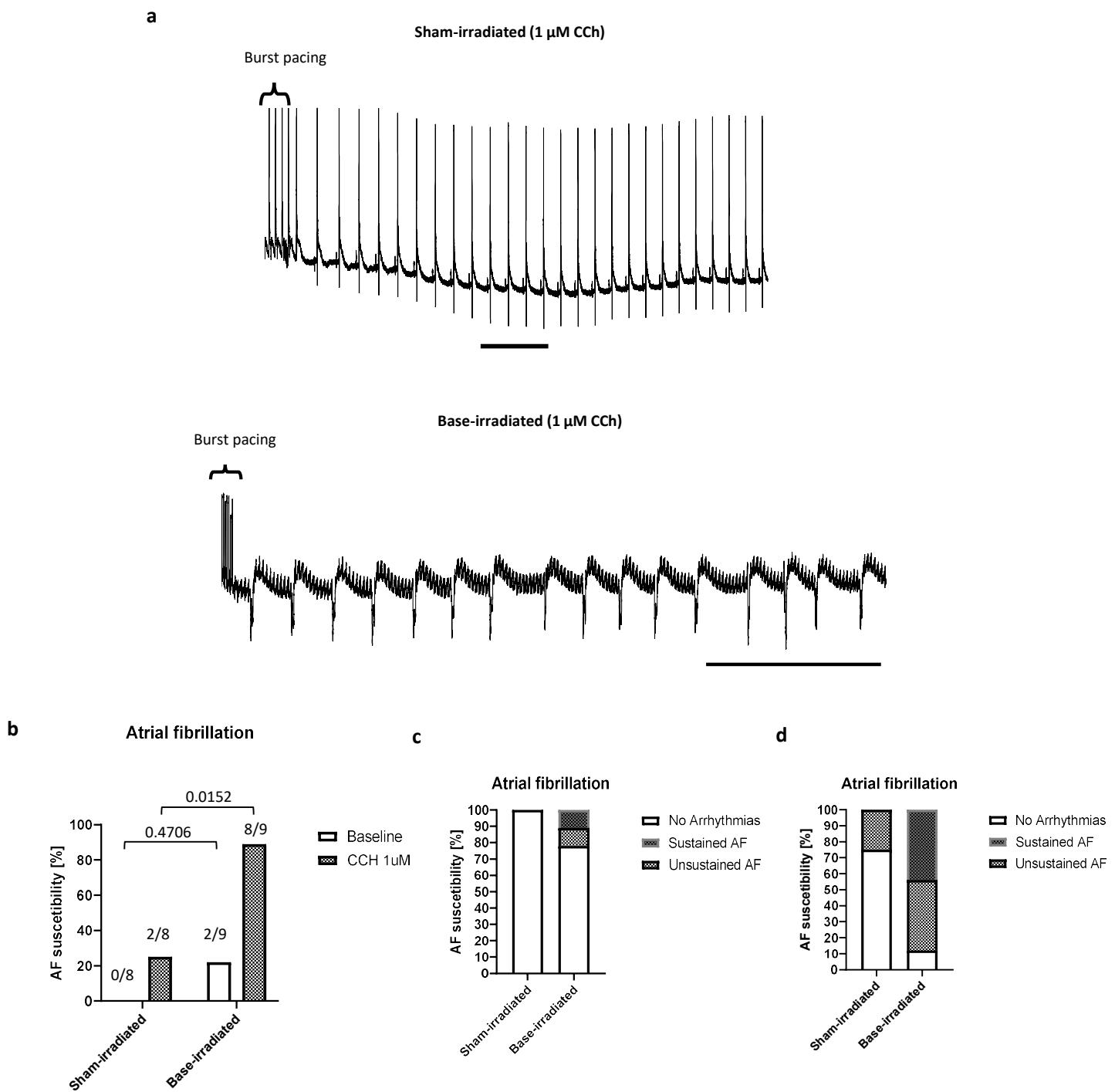

a-b, RNA-sequencing-derived heat maps of the first 12 most differentially expressed genes listed by pAdjusted values between sham-irradiated and apex (**a**) or base-irradiated (**b**) tissues. **c-d**, Bar plot of BP GO analysis of 20 most significant biological pathways from RNA-sequencing analysis of dissected tissue of apex (**c**) and base-irradiated (**d**) tissues. Dotted lines represent FDR < 0.05 of p value < 0.05. **e-f**, Lollipop plot of dysregulated proteins (Apex-irradiated tissue: 41; Base-irradiated tissue: 444) highlighting KEGG-based biological pathways. FDR cut off= 0.05 was used for this analysis.

Figure 4: Right atrium remodelling could explain the impact of RT on the conduction system


a, ST-derived volcano plot of DEG analysis ($\text{absolute } \log_2(\text{FC}) > 0.5$, $\text{FDR} < 0.05$) using Welch's t-test, which identified 38 dysregulated genes in right atrium tissue 10 weeks after RT at the base of the heart. **b**, Dot plot visual representation of statistically significant up- and down-regulated DEG in ST. $-\log_{10}(\text{pvalue})$ cut-off was adopted to screen the statistically significant abundant proteins to represent in the graph. **c**, KEGG-based lollipop plot of significant biological pathways of 38 DEG of ST. **d**, STRING plot with K-mean analysis of dysregulated DEG in ST. Identification of functional patterns was performed with BP. No pathway was correlated to green and blue clusters due to the limited number of belonging proteins. **e**, Bar plot of first 20 BP GO pathways of bulk-RNA sequencing of right atrium 20 weeks after RT. $\text{FDR} < 0.05$ of $p < 0.05$. **f**, Proteomic-based STRING plot after K-mean analysis of 53 statistically dysregulated proteins. Among them, 33 proteins resulted as disconnected nodes. Identification of functional patterns was performed with Molecular function (MF; Gene Ontology). KEGG was adopted for the classification in case of missing MF identification. *Continues*

g, Pr interval quantification during ex vivo pacing. Unpaired t-test was adopted with normally distributed data. Sham-irradiated: n=6 biological replicates; base-irradiated: n=9 biological replicates. **h**, AVERP data were normally distributed and unpaired t-test was adopted. Sham-irradiated: n=7 biological replicates; base-irradiated: n=7 biological replicates. For all graphs, data are represented as mean \pm SEM. P value is reported in graph.

Figure 5: Impact of RT at the base of the heart on AF occurrence

a, Representative ex-vivo pacing traces after burst pacing for AF induction in sham-irradiated (top) and base-irradiated heart (bottom), after perfusion with 1 μ M of CCh. Scale bars= 1 Sec. **b**, AF episodes quantification at baseline and with 1 μ M CCh perfusion. Fisher's exact test was applied. Exact numbers of AF episodes are reported in the graph in relation to the total number of analysed mice. **c-d**, Classification of the nature of AF in bar plot at baseline (**c**) and after CCh perfusion (**d**). b-d Sham-irradiated: n=8 biological replicates; base-irradiated: n=9 biological replicates. AF=atrial fibrillation; CCh: Carbachol.

	10 Weeks	20 Weeks
Ventricular Base 	Molecular: Remodelling in CM phenotype (Cardiomyopathy) and Ca^{2+} handling genes. Functional: -ECG (QRS↑) - Echocardiography (GLS↓)	Molecular: Exacerbation of cardiomyopathy (changes in metabolism) Functional: - No ECG changes - Echocardiography (GLS↓)
Ventricular Apex 	Molecular: Myofibroblasts subpopulation Functional: -No ECG changes - Echocardiography (GLS↓)	Molecular: ECM remodelling Functional: -No ECG changes - Echocardiography (GLS↓/EF↓)
Right Atrium 	Molecular: Remodelling in CM phenotype (Cardiomyopathy) Functional: No changes	Molecular: Tissue remodelling (Fibrosis formation-dilatation) Functional: -No ECG changes -Alteration in AV node, increased susceptibility to atrial arrhythmia

Figure 6: Schematic representation of the main characteristics for each region according to functional, transcriptomics and proteomics analysis

Cluster number	Cell type identity (PanglaoDB Augmented)	Main biological pathways (KEGG, Reactome, Bioplanet)
0	Cardiomyocytes	<ol style="list-style-type: none"> 1. Metabolism 2. Respiratory electron transport, ATP biosynthesis 3. Tricarboxylic acid (TCA) cycle and respiratory electron transport
1	Cardiomyocytes	<ol style="list-style-type: none"> 1. Dilated cardiomyopathy 2. Adrenergic signalling in cardiomyocytes 3. Citrate cycle (TCA cycle)
2	Myofibroblasts	<ol style="list-style-type: none"> 1. Vitamin C in brain 2. Bone mineralization regulation 3. Angiotensin-converting enzyme 2 regulation of heart function
3	Cardiomyocytes	<ol style="list-style-type: none"> 1. Fas signalling in cardiomyocytes 2. Corticosteroids and cardioprotection 3. YAP- and TAZ-stimulated gene expression
4	Cardiomyocytes	<ol style="list-style-type: none"> 1. Hypertrophic cardiomyopathy 2. Cardiomyocyte hypertrophy 3. Sarcomere in cardiomyocytes in dilated cardiomyopathy
5	Cardiomyocytes	<ol style="list-style-type: none"> 1. Muscle contraction 2. Regulation of complement cascade 3. Complement cascade
6	Erythroid-like and erythroid precursor cells	<ol style="list-style-type: none"> 1. Haptoglobin binding 2. Haemoglobin beta and alpha binding 3. Oxygen carrier activity and binding
7	Adipocytes	<ol style="list-style-type: none"> 1. Fatty acid metabolism 2. Metabolism 3. triglyceride biosynthesis
8	Smooth muscle cells	<ol style="list-style-type: none"> 1. Apelin signaling pathway 2. Vascular smooth muscle contraction 3. TCA cycle

Table 1: Gene-based classification of cluster's cell types and biological pathways

Description of the 9 identified clusters, with relative cell population identity ("cell type identity" column) using the first 10 marker genes for each population ("gene signature" column). PanglaoDB Augmented database was used for this analysis. Pathway analysis was performed with the first 100 markers genes per cluster using KEGG Human 2021 and Reactome 2022 database. The first hits are reported for each cluster. Both analysis were performed using EnrichR as platform. For a complete table of cluster markers, please see Supplementary material.